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Abstract

Recent deep learning methods for object detection rely

on a large amount of bounding box annotations. Collect-

ing these annotations is laborious and costly, yet supervised

models do not generalize well when testing on images from

a different distribution. Domain adaptation provides a so-

lution by adapting existing labels to the target testing data.

However, a large gap between domains could make adap-

tation a challenging task, which leads to unstable training

processes and sub-optimal solutions. In this paper, we pro-

pose to bridge the domain gap with an intermediate do-

main and then progressively solve easier adaptation sub-

tasks. Experimental results show that our method performs

favorably against the state-of-the-art method in terms of the

model test performance on the target domain.

1. Introduction

Object detection is an important computer vision task

that aims to localize and classify objects in the images. Re-

cent advancement in deep neural networks has brought sig-

nificant improvement to the performance of object detec-

tion [7, 18, 15, 16, 17, 12]. However, such deep models

usually require a large-scale annotated dataset for super-

vised learning and do not generalize well when the train-

ing and testing domains are different. For instance, the

domains can differ in sceneries, weather, lighting condi-

tions and the image appearance with respect to the cam-

era being used. Such domain discrepancy or domain-shift

causes unfavorable model generalization issues. Although

adding additional training data from the target domain can

improve the performance, collecting annotations is usually

time-consuming and labor-intensive.

Unsupervised domain adaptation methods aim to solve

the domain-shift problem without using ground truth la-

bels in the target domain. Given the source domain anno-

Figure 1. An illustration of our progressive adaptation method.

Conventional domain adaptation aims to solve domain-shift prob-

lem from source to target domain, which is denoted as lS→T. We

propose to bridge this gap with an intermediate synthetic domain

that allows us to gradually solve separate subtasks with smaller

gaps (shown as lS→F and lF→T). In addition, we treat each image

in the synthetic domain unequally based on its quality with re-

spect to the target domain, where the larger size in yellow triangle

stands for larger weights (i.e., the closer to the target, the higher of

the weight).

tations, the objective is to align the source and target fea-

ture distributions in an unsupervised manner, so that the

model can generalize to the target data. Numerous meth-

ods are developed in the context of image classification

[23, 13, 14, 20, 8, 22, 5, 1], while fewer efforts have been

made on more complicated tasks such as semantic segmen-

tation [10, 21] and object detection [9, 2, 11]. In fact, such

domain adaptation tasks are quite challenging as there usu-

ally exists a significant gap between source and target do-

mains.

In this paper, we aim to ease the efforts in aligning the

different domains. Inspired by [8] that resolves the domain-

shift problem via aligning intermediate feature representa-

tions, we utilize an intermediate domain that lies between

the source and target domain, and hence avoid direct map-

ping across the two distributions with a significant gap (as
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Figure 2. The proposed progressive adaptation framework. The algorithm includes two stages of adaptation as shown in a) and b). In a),

we first transform source images to generate synthetic ones by using the generator G learned via CycleGAN [24]. Afterward, we use the

labeled source domain and perform first stage adaptation to the synthetic domain. Then in b), our model applies a second stage adaptation

which takes the synthetic domain with labels inherited from the source and aligns the synthetic domain features with the target distribution.

In addition, a weight w is obtained from the discriminator Dcycle in CycleGAN to balance the synthetic image qualities in the detection

loss. The overall structure of our adaptation network is shown in c). Labeled and unlabeled images are both passed through the encoder

network E to extract CNN features featL and featU . We then use them to: 1) learn supervised object detection with the detector network

from featL, and 2) forward both features to GRL and a domain discriminator, learning domain-invariant features in an adversarial manner.

illustrated in Figure 1).

We conduct experiments on multiple domain discrep-

ancy issues such as weather changes and camera differ-

ences. With the proposed progressive adaptation , we show

that our method performs favorably against the state-of-the-

art algorithm in the target domains. The main contributions

of the work are summarized as follows: 1) we introduce

an intermediate domain in the proposed domain adaptation

framework to achieve progressive feature distribution align-

ment for object detection, 2) we develop a weighted task

loss during domain alignment based on the importance of

the samples in the intermediate domain, and 3) we conduct

extensive adaptation experiments under various object de-

tection scenarios and achieve state-of-the-art performance.

2. Progressive Domain Adaptation

We propose to decompose the domain adaptation prob-

lem into two smaller subtasks, bridged by a synthetic do-

main sitting in between the source and target distribution.

We denote the source, synthetic, and target domains as S, F

and T, respectively. The conventional adaptation from a la-

beled domain S to the unlabeled domain T is denoted as

S → T, while the proposed adaptation subtasks are ex-

pressed as S → F and F → T. An overview of the proposed

progressive adaptation framework is shown in Figure 2. We

discuss the details of the proposed adaptation network and

progressive learning in the following sections.

2.1. Adaptation in the Feature Space

In order to align distributions in the feature space, we

propose a deep model which consists of two components:

a detection network and a discriminator network for feature

alignment via adversarial learning.

Detection Network. We adopt the Faster R-CNN [18]

framework for the object detection task, where the detec-

tor has a base encoder network E to extract image fea-

tures. Given an image I, the feature map E(I) is extracted

and then fed into two branches: Region Proposal Network

(RPN) and a Region of Interest (ROI) classifier. We refer

to these branches as the detector, which is shown in Fig-

ure 2. To train the detection network, the loss function Ldet

is defined as:

Ldet(I) = Lrpn + Lcls + Lreg, (1)

where Lrpn, Lcls, and Lreg are the loss functions for the

RPN, classifier and bounding box regression, respectively.

Domain Discriminator. To align the distributions across

two domains, we append a domain discriminator D after

the encoder E. The main objective of this branch is to clas-

sify whether the feature E(I) comes from the source or the

target domain. Through this discriminator, the probability

of each pixel belonging to the target domain is obtained as

P = D(E(I)) ∈ R
H×W . We then apply a binary cross-

entropy loss to P based on the domain label d of the input

image, where images from the source distributions are given

the label d = 0 and the target images receive label d = 1.

The discriminator loss function Ldisc is formulated as:

Ldisc(E(I)) = −

∑

h,w

d logP(h,w)

+ (1− d) log(1−P
(h,w)). (2)
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Adversarial Learning. Adversarial learning is achieved

using the Gradient Reverse Layer (GRL) proposed in [4] to

learn the domain-invariant feature E(I). GRL is placed in

between the discriminator and the detection network, only

affecting the gradient computation in the backward pass.

During back-propagation, GRL negates the gradients that

flow through. As a result, the encoder E will receive gra-

dients that force it to update in an opposite direction which

maximizes the discriminator loss. This allows E to produce

features that fools the discriminator while D tries to distin-

guish the domain. For the adaptation task S → T, given

source images IS and target images IT, the overall min-max

loss function of the adaptive detection model is defined as

the following:

min
E

max
D

L(IS, IT) = Ldet(IS)+λdisc

[

Ldisc(E(IS))

+ Ldisc(E(IT))
]

, (3)

where λdisc is a weight applied to the discriminator loss that

balances the detection loss.

2.2. Progressive Adaptation

Aligning feature distributions between two distant do-

mains is challenging, and hence we introduce an intermedi-

ate feature space to make the adaptation task easier. That is,

without directly solving the gap between the source and the

target domains, we progressively perform adaptation to the

target domain bridged by the intermediate domain.

Intermediate Domain. The intermediate domain is con-

structed from the source domain images to synthesize the

target distributions on the pixel-level. We apply an image-

to-image translation network, CycleGAN [24], to learn a

function that maps the source domain images to the tar-

get ones, and vice versa. Since groundtruth labels are only

available in the source domain, we only consider the transla-

tion from source images to the target domain (i.e., synthetic

target images) after CycleGAN training.

Adaptation Process. Domain adaptation involves obtain-

ing knowledge (feature) from a labeled source domain S

and then apply that to an unlabeled target domain T by

aligning the two distributions, solving the adaptation task

S → T. To take advantage of the intermediate domain

during alignment, the proposed algorithm takes incremental

steps and decomposes the problem into two stages: S → F

and F → T, as shown in Figure 2 a) and b). At stage one,

we use S as the source domain adapting to F as the target

domain without labels. Due to the underlying similarity be-

tween S and F in image contents, the network focuses on

aligning the feature distributions with respect to the appear-

ance difference in the pixel-level. After aligning the pixel

discrepancies between S and F, we take F as the source do-

main for supervision and adapts to T as stage two in the pro-

posed method. During this step, the model takes advantage

of the appearance invariant features from the previous step

and focus on adapting the objects and context distributions.

In summary, the proposed method separates the adaptation

task into two subtasks and pays more attention to individual

discrepancies during each adaptation stage.

Weighted Supervision. We observe that the quality of

synthetic images differs in a wide range. For instance, some

images fail to preserve details of objects or contain artifacts

when translated, and these failure cases may have a larger

distance to the target distribution.

As a result, when performing supervised detection learn-

ing on F during F → T, these defects may cause confusions

to our detection model, leading to false feature alignment

across domains. To alleviate this problem, we propose an

importance weighting strategy for synthetic samples based

on their distances to the target distribution. Specifically,

synthetic outliers that are farther away from the target dis-

tributions will receive less attention than the ones that are

closer to the target domain. We obtain the weights by tak-

ing the predicted output scores from the target domain dis-

criminator Dcycle in CycleGAN [24]. This discriminator is

trained to differentiate between the source and target images

with respect to the target distribution, in which the optimal

discriminator is obtained with:

D∗

cycle(I) =
pT(I)

pS(I) + pT(I)
, (4)

where I is the synthetic target image generated via Cycle-

GAN, and pT(I) and pS(I) are the probability of I belonging

to the source and the target domain, respectively. Here, the

higher score of Dcycle(I) represents a closer distribution to

the target domain and thus should provide a higher weight.

On the other hand, lower quality images which are further

away from the target domain will be treated as outliers and

receive a lower weight. For each image I, the importance

weight is defined as:

w(I) =

{

Dcycle(I), if I ∈ F

1, otherwise.
(5)

We then apply this weight to the detection loss functions in

equation (1) when learning from the synthetic image anno-

tations during the second stage. Thus, the final weighted

objective function given images IS and IT is re-written

from (2) as:

min
E

max
D

L(IS, IT) = w(IS)Ldet(IS)

+ λdisc

[

Ldisc(E(IS)) + Ldisc(E(IT))
]

. (6)

3. Experimental Results

In this section, we validate our method by evaluating the

performance in two real-world scenarios that result in dif-

ferent domain discrepancies: cross-camera adaptation, and

weather adaptation.
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Table 1. Weather adaptation focusing on clear weather to foggy weather using the Cityscapes and Foggy Cityscapes datasets respectively.

Performance is evaluated using the mean average precision (mAP) across 8 classes.

Cityscapes → Foggy Cityscapes

Method person rider car truck bus train motorcycle bicycle mAP

Faster R-CNN 23.3 29.4 36.9 7.1 17.9 2.4 13.9 25.7 19.6

FRCNN in the wild [2] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
Ours (w/o synthetic) 30.2 37.9 46.1 14.7 26.9 7.0 20.8 31.5 26.9
Ours (synthetic augment) 36.6 45.3 55.0 24.2 43.9 18.5 28.4 37.1 36.1
Ours (progressive) 36.0 45.5 54.4 24.3 44.1 25.8 29.1 35.9 36.9

Oracle 37.8 48.4 58.8 25.2 53.3 15.8 35.4 39.0 39.2

Table 2. Cross camera adaptation using KITTI and Cityscapes

datasets. The results show the average precision (AP) of the car

class shared between the two domains.

KITTI → Cityscapes

Method AP

Faster R-CNN 28.8

FRCNN in the wild [2] 38.5

Ours (w/o synthetic) 38.2

Ours (synthetic augment) 40.6

Ours (progressive) 43.9

Oracle 55.8

3.1. Cross Camera Adaptation

The underlying camera settings and mechanisms of dif-

ferent datatsets can lead to critical differences in visual ap-

pearance as well as the image quality. These discrepancies

are where the domain-shift takes place. In this experiment,

we show the adaptation between images taken from differ-

ent cameras and with distinctive scenery plus content differ-

ences. The KITTI [6] and Cityscapes [3] datasets are used

as source and target respectively to conduct the cross cam-

era adaptation experiment. Experimental results show that

our method performs favorably against the state-of-the-art

method [2] that learns to adapt in the feature space, match-

ing the baseline performance of our own implementation

denoted as Ours (w/o synthetic). The adaptation results are

shown in Table 2, evaluated on the car class in terms of the

average precision (AP).

In order to validate our method, we also conduct abla-

tion studies using several settings. First, we demonstrate

the benefit of utilizing information from the synthetic do-

main. When we directly augment synthetic data in the train-

ing set and include them in the source domain to perform

feature-level adaptation, there is a 2.4% performance gain.

In the proposed method, by adopting our progressive train-

ing scheme with the importance weights, we show in Table

2 that our model further improves the AP by 3.3%. Overall,

our model can address the domain-shift problem caused by

the camera along with other content differences across two

distinct datasets and achieves state-of-the-art performance.

3.2. Weather Adaptation

Under real-world scenarios, object detection models can

be applied in different weather conditions where they may

not have sufficient knowledge of. However, it is difficult

to obtain a large number of annotations in every weather

condition for the models to learn. This section studies the

weather adaptation from clear weather to a foggy environ-

ment. The Cityscapes [3] dataset is used as the source do-

main and the Foggy Cityscapes [19] dataset as the target

domain.

For a fair comparison with the state-of-the-art method

[2], we evaluate our method on 8 classes in the Cityscapes

dataset as shown in Table 1. This table shows that our

method can further reduce the domain gap across weather

conditions. In addition, we discuss the characteristics of the

two datasets and why it is in favor of our method.

When synthetic images are used during adaptation, the

results show that there is a 9.2% improvement in perfor-

mance. We note that the target Foggy Cityscapes dataset

is fundamentally the same image as the source, Cityscapes

dataset. On the other hand, the synthetic data is distributed

closely to the target domain and inherits informative la-

bels for the network to learn, enhancing performance in the

target domain. Given such information learned from the

synthetic domain, both our method and the synthetic aug-

mented one climbs closely to the oracle result. Although

the synthetic domain lies close to the target distribution, we

show in the results that our progressive training can still as-

sist the adaptation process, improving performance and at

the same time generalizing well to different categories.

4. Conclusions

In this paper, we propose a progressive adaptation

method that bridges the domain gap using an intermediate

domain, decomposing a more difficult task into two eas-

ier subtasks. Using this intermediate domain, the proposed

method progressively solves the adaptation subtasks by first

adapting from source to the intermediate domain and then

finally to the target domain. Experimental results show that

the proposed method performs favorably against the state-

of-the-art method and can further reduce the domain dis-

crepancy under various scenarios.
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